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Direct observation of kinetic instabilities in the current-quench

• In DIII-D disruption experiments, low-frequency (0.1-3 MHz)
kinetic instabilities are identified during current quench
with Ar MGI.

• Strong excitation of modes can lead to intense intermittent RE
loss to the wall and the RE plateau will not build up.

• Increase Ar density reduces the number of high-energy REs,
suppresses instabilities, helps RE plateau survive.

• Kinetic instabilities through self-excitation or external drive
provide a possible approach to mitigate RE formation.

• Kinetic instabilities are not observed in Ar pellet injection
experiments in DIII-D.

Current evolution of two DIII-D shots with
different Ar MGI

Observed magnetic perturbation spectrum and
correlation with RE energy and RE loss
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Mode excitation and RE plateau dissipation depend on RE energy

• RE energy spectrum diagnosed using gamma ray
imager (GRI) show that excitation of modes and
dissipation of RE plateau depend on the
existence of high-energy REs.

• Max ERE > 2.5− 3 MeV is required for the mode
excitation.

• RE plateau formation fails when max ERE > 6 MeV.

• The modes spectrum shows discrete structures,
with frequencies 0.1-2.4MHz with a spacing of
400kHz.

• The frequencies are of the same order of Ar
cyclotron frequency.

• The discrete frequencies decrease during
current-quench.

RE energy spectrum with different Ar MGI

Mode power spectrum at different time
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Previous studies on kinetic instabilities excited by REs in flattop

• Anisotropic distribution of RE tail can drive “fan
instabilities” or anomalous Doppler instabilities
(ADI).

• Whistler wave excited by REs have been directly
observed in DIII-D flattop RE experiments

• Excited modes have discrete spectrum and strong
correlations with the ECE signals.

• Using quasilinear simulation, we studied the
excitation of whistler modes self-consistently.

• RE can interact with whistler waves in GHz
frequency range, and the excited mode can cause
large pitch angle scattering.

• Avalanche can be suppressed by the scattering
effect making the critical electric field larger than
ECH.

Frequency spectrum of whistler waves in DIII-D flattop

RE distribution function from quasilinear simulation without
and with whistler wave scattering
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REs can have resonances with MHz fast waves through precession motion

In order to transfer energy to fast waves, runaway electrons must have resonances with the
modes.

• ωce ≈ 58GHz� ω, so Doppler resonance (ω = nωce) is unlikely.

• Transit and bounce frequencies of relativistic electrons (∼ 13MHz) are too large compared to
ω.

• Precession frequency (ωd) of trapped runaway electrons is about 0.3MHz, so the resonance
condition ω = nωd can be satisfied.

• Unlike transit and bounce frequencies, precession frequency is proportional to the RE energy.
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Experimental and simulation studies on Alfvén modes excited by energetic electrons

• Shear Alfvén waves can have resonance with the
low energy part of RE tail with steep density
profiles.

• Beta-induced Alfvén eigenmode (BAE) and
toroidal eigenmode (TAE) excited by energetic
electrons have been identified in HL-2A
experiments in flattop.

• Trapped electrons can be produced by ECRH and
have wave-particle interaction at precession
frequencies.

• TAEs driven by deeply trapped energetic electrons
have been simulated using kinetic-MHD code
MEGA.

HL-2A experiment with BAE driven by energetic electrons
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Kinetic energy evolution of n = 4 TAE driven by energetic
electrons (EE) or energetic ions (EI) from MEGA simulation
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Trapped RE can be generated from pitch angle scattering with high-Z impurities

• With partially ionized high-Z impurities, the slowing-down and pitch angle scattering of REs
in high energy regime is significantly enhanced due to partially-screening.

RE momentum space distribution in kinetic simulation of hot-tail generation with partially-screening
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Introduction to M3D-C1-K

• M3D-C1-K is a kinetic-MHD code based on M3D-C1
that uses PIC method to simulate the kinetic
particles and couples the particle moments with
MHD, which is similar to M3D-K.

• We have done several benchmark tests with
other codes, including fishbone, TAE and RSAE.

Growth rates and frequencies of linear fishbone simulation from
M3D-C1-K, comparing with NIMROD and M3D-K
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Mode structure of n = 4 RSAE in DIII-D from M3D-C1-K simulation
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M3D-C1-K is suitable for simulating RE interacting with MHD

The large velocity of runaway electrons poses a chal-
lenge for kinetic simulation using PIC.

• In M3D-C1-K the particle pushing is developed
using particle-based parallelization and can run
efficiently on GPUs, which has a significant
speedup compared to CPUs.

• A slow manifold Boris algorithm is utilized in the
particle pushing, which can conserve momentum
and energy numerically and make the long time
simulation result more reliable.

Computation time for pushing 4 million particles for 50 steps
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Numerical error of Pφ and energy from particle simulation using
Boris method and RK4
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Fast wave can interact with REs through mirror forces

• Resonant trapped RE can be pushed radially by the mirror force from fast wave perturbed
fields

δḟ = −df0dt =
dPφ
dt

∂f0
∂Pφ

+
dE
dt
∂f0
∂E ,

Ṗφ = qψ̇ + RBφ

B
(
qE‖ − µb · ∇B

)
Ė = qv · E+ µ

∂B‖

∂t

• Mirror force (µ∇B) can change Pφ of resonant trapped REs but not the energy, so REs can move
radially which is similar to Ware pinch.

• The runaway electrons using current coupling.

ρ

(
∂V
∂t

)
+ ρ(V · ∇V) = (J− JRE)× B−∇p

• JRE,⊥ comes from the gradient and curvature drift of REs and magnetization current (∇× (P⊥b/B)).

10



Simulation setup

The equilibrium is read using EFIT results from DIII-D shot #177028 at 1208ms.

simulation time

Simulation mesh

1.0 1.5 2.0
R (m)

1.0

0.5

0.0

0.5

1.0

Z 
(m

)

Plasma density

1.5 2.0
R (m)

1.0

0.5

0.0

0.5

1.0

Z
 (

m
)

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0
×1020m-3

11



Simulation setup (cont’d)

B0 = 2T n0 = 4× 1020m−3 mion = mAr = 40 Zeff = 2 Te = 10eV
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Mode structure
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• Analysis of δB shows that δB‖ � δB⊥, indicating they are compressional Alfvén eigenmodes
(CAEs).
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Mode frequencies and linear growth rates

Mode frequency
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Stability map of n = 1mode

Assuming growth rate γ ∼ nRE and damping rate γD ∼ T−3/2
e , the stability map of n = 1 mode looks

like
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Summary

• Fast waves can be excited by trapped REs through precession resonance.

• Linear simulation of M3D-C1-K shows that the n = 1 mode can become unstable for
nRE > 4× 1016m−3 in 10eV Ar plasma. Higher n mode can also become unstable with higher
threshold, and mode frequencies agree with experiments.

• Future work:
• Continue linear simulations to study the dependence of mode excitation on plasma parameters and
RE distribution

• Try nonlinear simulation to study the coupling of multiple modes and effects on RE transport.
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